Algorithms for Colourful Simplicial Depth and Medians in the Plane

نویسندگان

  • Olga Zasenko
  • Tamon Stephen
چکیده

The colourful simplicial depth (CSD) of a point x ∈ R relative to a configuration P = (P , P , . . . , P ) of n points in k colour classes is exactly the number of closed simplices (triangles) with vertices from 3 different colour classes that contain x in their convex hull. We consider the problems of efficiently computing the colourful simplicial depth of a point x, and of finding a point in R, called a median, that maximizes colourful simplicial depth. For computing the colourful simplicial depth of x, our algorithm runs in time O (n logn+ kn) in general, and O(kn) if the points are sorted around x. For finding the colourful median, we get a time of O(n). For comparison, the running times of the best known algorithm for the monochrome version of these problems are O (n logn) in general, improving to O(n) if the points are sorted around x for monochrome depth, and O(n) for finding a monochrome median.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colourful Simplicial Depth

Inspired by Bárány’s Colourful Carathéodory Theorem [4], we introduce a colourful generalization of Liu’s simplicial depth [13]. We prove a parity property and conjecture that the minimum colourful simplicial depth of any core point in any d-dimensional configuration is d2 +1 and that the maximum is dd+1 +1. We exhibit configurations attaining each of these depths, and apply our results to the ...

متن کامل

Advanced Optimization Laboratory Title : Colourful Simplicial

Inspired by Bárány’s colourful Carathéodory theorem [Bár82], we introduce a colourful generalization of Liu’s simplicial depth [Liu90]. We prove a parity property and conjecture that the minimum colourful simplicial depth of any core point in any ddimensional configuration is d + 1 and that the maximum is d + 1. We exhibit configurations attaining each of these depths, and apply our results to ...

متن کامل

Small Octahedral Systems

We consider set systems that satisfy a certain octahedral parity property. Such systems arise when studying the colourful simplices formed by configurations of points of in R; configurations of low colourful simplicial depth correspond to systems with small cardinality. This construction can be used to find lower bounds computationally for the minimum colourful simplicial depth of a configurati...

متن کامل

On Combinatorial Depth Measures

Given a set P = {p1, . . . , pn} of points and a point q in the plane, we define a function ψ(q) that provides a combinatorial characterization of the multiset of values {|P ∩Hi|}, where for each i ∈ {1, . . . , n}, Hi is the open half-plane determined by q and pi. We introduce two new natural measures of depth, perihedral depth and eutomic depth, and we show how to express these and the well-k...

متن کامل

A combinatorial approach to colourful simplicial depth

The colourful simplicial depth conjecture states that any point in the convex hull of each of d+1 sets, or colours, of d+1 points in general position inRd is contained in at least d 2 +1 simplices with one vertex from each set. We verify the conjecture in dimension 4 and strengthen the known lower bounds in higher dimensions. These results are obtained using a combinatorial generalization of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016